

Linear Multistep Methods

The Linear Multistep Methods (LMM's) are probably the most natural extension to time marching of the space differencing schemes.

$$\sum_{k=1-K}^{1} \alpha_k u_{n+k} = h \sum_{k=1-K}^{1} \beta_k u'_{n+k}$$

Applying the representative ODE, $u' = \lambda u + ae^{\mu t}$, the characteristic polynominals P(E) and Q(E)

$$\left[\left(\sum_{k=1-K}^{1} \alpha_k E^k \right) - \left(\sum_{k=1-K}^{1} \beta_k E^k \right) h \lambda \right] u_n = h \left(\sum_{k=1-K}^{1} \beta_k E^k \right) a e^{\mu h n}$$
$$\left[P(E) \right] u_n = Q(E) a e^{\mu h n}$$

Consistency requires that $\sigma \to 1$ as $h \to 0$ which is met if

$$\sum_{k} \alpha_{k} = 0 \quad \text{and} \quad \sum_{k} \beta_{k} = \sum_{k} (K + k - 1)\alpha_{k}$$

"Normalization" results in $\sum_{k} \beta_{k} = 1$

Families of Linear Multistep Methods

1. Adams-Moulton family

$$\alpha_1 = 1, \quad \alpha_0 = -1, \quad \alpha_k = 0, \quad k = -1, -2, \dots$$

- 2. Adams-Bashforth family has the same α 's with the additional constraint that $\beta_1 = 0$.
- 3. Three-step Adams-Moulton method can be written in the following form

$$u_{n+1} = u_n + h(\beta_1 u'_{n+1} + \beta_0 u'_n + \beta_{-1} u'_{n-1} + \beta_{-2} u'_{n-2})$$

Taylor tables can be used to find classes of second, third and fourth order methods.

4. For example, with $\beta_1 = 0$ and

$$\beta_0 = 23/12, \qquad \beta_{-1} = -16/12, \qquad \beta_{-2} = 5/12$$

produces the third-order Adams-Bashforth method.

Examples of Linear Multistep Methods

Explicit Methods

$$u_{n+1} = u_n + hu'_n$$
 Euler
 $u_{n+1} = u_{n-1} + 2hu'_n$ Leapfrog
 $u_{n+1} = u_n + \frac{1}{2}h[3u'_n - u'_{n-1}]$ AB2
 $u_{n+1} = u_n + \frac{h}{12}[23u'_n - 16u'_{n-1} + 5u'_{n-2}]$ AB3

Implicit Methods

$$u_{n+1} = u_n + hu'_{n+1}$$
 Implicit Euler $u_{n+1} = u_n + \frac{1}{2}h[u'_n + u'_{n+1}]$ Trapezoidal (AM2) $u_{n+1} = \frac{1}{3}[4u_n - u_{n-1} + 2hu'_{n+1}]$ 2nd-order Backward $u_{n+1} = u_n + \frac{h}{12}[5u'_{n+1} + 8u'_n - u'_{n-1}]$ AM3

Two-Step Linear Multistep Methods

1. Minimal storage requirements for high-resolution CFD problems restrict methods to two time levels.

2. Most general scheme
$$(1+\xi)u_{n+1} = [(1+2\xi)u_n - \xi u_{n-1}] + h[\theta u'_{n+1} + (1-\theta+\varphi)u'_n - \varphi u'_{n-1}]$$

3. Examples:

θ	ξ	φ	Method	Order
0	0	0	Euler	1
1	0	0	Implicit Euler	1
1/2	0	0	Trapezoidal or AM2	2
1	1/2	0	2nd Order Backward	2
3/4	0	-1/4	Adams type	2
1/3	-1/2	-1/3	Lees	2
1/2	-1/2	-1/2	Two-step trapezoidal	2
5/9	-1/6	-2/9	A-contractive	2
0	-1/2	0	Leapfrog	2
0	0	1/2	AB2	2
0	-5/6	-1/3	Most accurate explicit	3
1/3	-1/6	0	Third-order implicit	3
5/12	0	1/12	AM3	3
1/6	-1/2	-1/6	Milne	4

- 4. Both er_{μ} and er_{λ} are reduced to $0(h^3)$ if $\varphi = \xi \theta + \frac{1}{2}$
- 5. The class of all 3rd-order methods $\xi=2\theta-\frac{5}{6}$
- 6. Unique fourth-order method is found by setting $\theta = -\varphi = -\xi/3 = \frac{1}{6}$.

Predictor-Corrector Methods

1. Predictor-corrector methods are composed of sequences of linear multistep methods.

2. Simple one-predictor, one-corrector scheme

$$\tilde{u}_{n+\alpha} = u_n + \alpha h u'_n
u_{n+1} = u_n + h \left[\beta \tilde{u}'_{n+\alpha} + \gamma u'_n\right]$$

3. α, β and γ are arbitrary parameters.

$$P(E) = E^{\alpha} \cdot \left[E - 1 - (\gamma + \beta)\lambda h - \alpha\beta\lambda^{2}h^{2} \right]$$

$$Q(E) = E^{\alpha} \cdot h \cdot \left[\beta E^{\alpha} + \gamma + \alpha\beta\lambda h \right]$$

4. Second-order accuracy: both er_{λ} and er_{μ} must be $O(h^3)$.

5. Leads to: $\gamma + \beta = 1$; $\alpha\beta = \frac{1}{2}$

6. Second-order accurate predictor-corrector sequence for any α

$$\tilde{u}_{n+\alpha} = u_n + \alpha h u'_n
u_{n+1} = u_n + \frac{1}{2} h \left[\left(\frac{1}{\alpha} \right) \tilde{u}'_{n+\alpha} + \left(\frac{2\alpha - 1}{\alpha} \right) u'_n \right]$$

Predictor-Corrector Methods: Examples

1. The Adams-Bashforth-Moulton sequence for k=3

$$\tilde{u}_{n+1} = u_n + \frac{1}{2}h[3u'_n - u'_{n-1}]$$

$$u_{n+1} = u_n + \frac{h}{12}[5\tilde{u}'_{n+1} + 8u'_n - u'_{n-1}]$$

2. The Gazdag method

$$\tilde{u}_{n+1} = u_n + \frac{1}{2}h[3\tilde{u}'_n - \tilde{u}'_{n-1}]$$

$$u_{n+1} = u_n + \frac{1}{2}h[\tilde{u}'_n + \tilde{u}'_{n+1}]$$

3. The Burstein method $\alpha = 1/2$ is

$$\tilde{u}_{n+1/2} = u_n + \frac{1}{2}hu'_n$$
 $u_{n+1} = u_n + h\tilde{u}'_{n+1/2}$

4. MacCormack's method

$$\tilde{u}_{n+1} = u_n + hu'_n$$

$$u_{n+1} = \frac{1}{2}[u_n + \tilde{u}_{n+1} + h\tilde{u}'_{n+1}]$$

Runge-Kutta Methods

1. Runge-Kutta method of order k (up to 4th order), the principal (and only) σ -root is given by

$$\sigma = 1 + \lambda h + \frac{1}{2}\lambda^2 h^2 + \dots + \frac{1}{k!}\lambda^k h^k$$

- 2. To ensure kth order accuracy, the method must have $er_{\mu} = O(h^{k+1})$
- 3. General RK(N) scheme

$$\widehat{u}_{n+\alpha} = u_n + \beta h u'_n
\widetilde{u}_{n+\alpha_1} = u_n + \beta_1 h u'_n + \gamma_1 h \widehat{u}'_{n+\alpha}
\overline{u}_{n+\alpha_2} = u_n + \beta_2 h u'_n + \gamma_2 h \widehat{u}'_{n+\alpha} + \delta_2 h \widetilde{u}'_{n+\alpha_1}
u_{n+1} = u_n + \mu_1 h u'_n + \mu_2 h \widehat{u}'_{n+\alpha} + \mu_3 h \widetilde{u}'_{n+\alpha_1} + \mu_4 h \overline{u}'_{n+\alpha_2}$$

4. Total of 13 free parameters, where the choices for the time samplings, α , α_1 , and α_2 , are not arbitrary.

$$\alpha = \beta$$

$$\alpha_1 = \beta_1 + \gamma_1$$

$$\alpha_2 = \beta_2 + \gamma_2 + \delta_2$$

Runge-Kutta Methods

- 1. Ten (10) free parameters remain to obtain various levels of accuracy.
- 2. Finding P(E) and Q(E) and then eliminating the β 's results in the four conditions

$$\mu_1 + \mu_2 + \mu_3 + \mu_4 = 1 \tag{1}$$

$$\mu_2 \alpha + \mu_3 \alpha_1 + \mu_4 \alpha_2 = 1/2 \tag{2}$$

$$\mu_3 \alpha \gamma_1 + \mu_4 (\alpha \gamma_2 + \alpha_1 \delta_2) = 1/6 \tag{3}$$

$$\mu_4 \alpha \gamma_1 \delta_2 \qquad = 1/24 \tag{4}$$

- 3. Guarantee that the five terms in σ exactly match the first 5 terms in the expansion of $e^{\lambda h}$.
- 4. To satisfy the condition that $er_{\mu} = O(h^5)$

$$\mu_2 \alpha^2 + \mu_3 \alpha_1^2 + \mu_4 \alpha_2^2 = 1/3 \tag{3}$$

$$\mu_2 \alpha^3 + \mu_3 \alpha_1^3 + \mu_4 \alpha_2^3 = 1/4 \tag{4}$$

$$\mu_2 \alpha^3 + \mu_3 \alpha_1^3 + \mu_4 \alpha_2^3 = 1/4$$

$$\mu_3 \alpha^2 \gamma_1 + \mu_4 (\alpha^2 \gamma_2 + \alpha_1^2 \delta_2) = 1/12$$
(4)

$$\mu_3 \alpha \alpha_1 \gamma_1 + \mu_4 \alpha_2 (\alpha \gamma_2 + \alpha_1 \delta_2) = 1/8 \tag{4}$$

5. Gives 8 equations for 10 unknowns.

RK4 Method

1. Storage requirements and work estimates allow for a variety of choices for the remaining 2 parameters.

2. "Standard" 4^{th} order Runge-Kutta method expressed in predictor-corrector form

$$\widehat{u}_{n+1/2} = u_n + \frac{1}{2}hu'_n
\widetilde{u}_{n+1/2} = u_n + \frac{1}{2}h\widehat{u}'_{n+1/2}
\overline{u}_{n+1} = u_n + h\widetilde{u}'_{n+1/2}
u_{n+1} = u_n + \frac{1}{6}h\Big[u'_n + 2\Big(\widehat{u}'_{n+1/2} + \widetilde{u}'_{n+1/2}\Big) + \overline{u}'_{n+1}\Big]$$

3. Notice that this represents the simple sequence of conventional linear multistep methods

Euler Predictor

Euler Corrector

Leapfrog Predictor

Milne Corrector

$$= RK4$$